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Shannon identifies information with 
surprise

For example:  Telling someone it is 
smoggy in Los Angeles is not much of 
a surprise, and therefore not much new 
information
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p is the probability of the event 

I (p) is information gained from that event

Information learned from independent events is additive

pp is the probability of the event is the probability of the event 

I I ((pp) is information gained from that event) is information gained from that event

Information learned from independent events is additiveInformation learned from independent events is additive

Surprise definedSurprise definedSurprise defined

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=

p
ppI 1loglog)( 22

)()()( 2121 pIpIppI +=

Definition ConfoundingDefinition ConfoundingDefinition Confounding
Information Theory has not “defined”
information

It actually measures “surprise”

Shannon’s definition may suffice for 
machines, but it does not represent what we 
normally think of as information

Should have been called “Communication 
Theory” and not “Information Theory”
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Definition ConfoundingDefinition ConfoundingDefinition Confounding
Realize how much the definition distorts the 
common view of information

Illustrates a point to examine whenever new 
definitions presented
• How far does the proposed definition agree with the 

original concepts you had, and how far does it differ?
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Information Entropy:  H(P)Information Entropy:  Information Entropy:  HH((PP))
The average amount of information in the system

Not the same as physical entropy even though 
mathematical form is similar
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Gibbs Inequality
(mathematical interlude)
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Here q & p are independent probability distributions

Note the form is nearly identical to H(P)

From fig 13.1:

so where qi = 1/q and q = 1-p
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Kraft Inequality: K
(mathematical interlude continues)
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Given a uniquely decodable code
Where li is length of code segment i

Define the pseudoprobabilities where

It then follows from Gibbs
Substituting Qi for qi

And finally the “Noiseless Coding Theorem of Shannon”
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Channel Capacity definedChannel Capacity definedChannel Capacity defined
The maximum amount of information that 
can be sent through the channel reliably
With n bits sent, expect nQ errors
Given a large enough n
• you can force the probability of

falling outside the nQ boundary
as small as you please
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Channel CapacityChannel CapacityChannel Capacity
Based upon random encoding with no error correction

With M messages of length n there are  2Mn code books
• Leaves the possibility for destructive overlap

Proved the possibility of overlap is very small by averaging 
over all 2Mn code books for the average error

Using sufficiently large n’s will reduce the probability of 
error while simultaneously maximizing the flow of 
information through the channel

Thus if the average error is suitably small, then at least one 
code will be suitable:    “Shannon’s noisy coding theorem”
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What does it mean?What does it mean?What does it mean?
“Sufficiently large n” necessary to ensure 
information flow is approaching channel 
capacity may be so large as to be too slow

Error-correcting codes avoid the slowness 
at the cost of some channel capacity
• Use computable functions, rather than lengthy 

random code books
• When many errors are corrected, the performance 

compared to channel capacity is quite good
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In PracticeIn PracticeIn Practice
If your system provides error correction, use it!
Solar-system exploration satellites
• Extreme total-power limitations of system about 5W, so 

restricted transmission power and distance/background noise 
induce errors.

• Aggressive error-correcting codes enabled more effective use 
of available bandwidth as errors were self correcting

Hamming codes may not guarantee use near optimal channel 
capacity, but does guarantee error-correction reliability to a 
specified level
Shannon coding only states a “probably low error” given a 
long enough series of bits, but will push those bits near 
channel capacity
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In PracticeIn PracticeIn Practice
Information theory does not tell you how to 
design, but gives point the way towards 
efficient designs

Remember, information theory applies to 
data communications and is not necessarily 
relevant to human communication
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Final PointsFinal PointsFinal Points
Reuse of established terms as definitions in 
a new area should fit our previous beliefs, 
but often do not and have some degree of 
distortion and non-applicability to the way 
we thought things were.

Definitions don’t actually define things, just 
suggest how those things should be 
handled.
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Final PointsFinal PointsFinal Points
All definitions should be inspected, not only when 
proposed but later when they apply to the 
conclusions drawn.  
• Were they framed to get the desired result?  

• Are they applicable under differing conditions?

Beware:  initial definitions often determine what 
you find or see, rather than describe what is 
actually there.
• Are they creating results which are circular tautologies vice 

actual results?
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